

TOWN OF BETHLEHEM

STORMWATER MANAGEMENT PRACTICE (SMP) SELECTION MATRICES FORM

Instructions: This form is designed as a process of elimination for selecting SMPs suitable for a project site. The number of SMP groups and design variants available as Potential Practices decreases as the user progresses through the five steps. Submit this form with the Sketch Plan Application prior to scheduling a meeting with the Development Planning Committee.

Project Name:	Preparer:	Date:
i ojeet i (untet	1 opuloit	20000

STEP 1: Based on the *land use* of the project, determine which SMPs are suitable for the site: (A) First, check the land use category; (B) Then, check the SMPs considered *potential practices* based on their suitability within the proposed land use.

	Table 1 - Land Use Selection Matrix							
SMP	SMP Design Variants	Rural	Residential	Roads and Highways	Commercial/ High Density	Hotspots	Ultra Urban	otenti ractic
Group	8							d
	Micropool ED Pond (P-1)	Y	Y	Y	D	A1	Ν	
S	Wet Pond (P-2)	Y	Y	Y	D	A1	Ν	
puo	Wet ED Pond (P-3)	Y	Y	Y	D	A1	Ν	
1	Multiple Pond (P-4)	Y	Y	D	D	A1	Ν	
	Pocket Pond (P-5)	Y	D	Y	D	Ν	Ν	
	Shallow Wetland (W-1)	Y	Y	D	D	A1	Ν	
ands	ED Wetland (W-2)	Y	Y	D	D	A1	Ν	
Wetl	Pond/Wetland (W-3)	Y	Y	Ν	D	A1	Ν	
r	Pocket Wetland (W-4)	Y	D	Y	D	Ν	Ν	
ion	Infiltration Trench (I-1)	D	D	Y	Y	Ν	D	
iltrat	Infiltration Basin (I-2)	D	D	D	D	Ν	D	
lnfi	Dry Well (I-3)	D	Y	Ν	D	N	D	
	Surface SF (F-1)	Ν	D	Y	Y	A2	Y	
ng es	Underground SF (F-2)	Ν	Ν	D	Y	Y	Y	
lteriı actic	Perimeter SF (F-3)	Ν	Ν	D	Y	Y	Y	
Fi Pr	Organic Filter (F-4)	Ν	D	Y	Y	A2	Y	
	Bioretention (F-5)	D	D	Y	Y	A2	Y	
en ınels	Dry Swale (O-1)	Y	D	Y	D	A2	D	
Op Chai	Wet Swale (O-2)	Y	Ν	Y	Ν	Ν	Ν	

Notes:

Y = Yes - Good option in most cases based upon land use

D = Depends – Suitable under certain conditions or used to treat a portion of the site (justify not using a "Yes" practice)

N = No - Seldom or never a suitable option based upon land use

A1 = Acceptable, but may require a impermeable liner to reduce risk of groundwater contamination

A2 = Acceptable option if practice is not designed to infiltrate runoff

Ps I		TABLE 2	Feasibility	Feasibility Matrix					
Yes' SM from Ste _l	SMP Group	SMP Design Variants	Soils	Water Table	Drainage Area (ac)	Site Slope	Head (ft)	Potentio Practice	
		Micropool ED Pond (P-1)		2 feet	10 min^1				
	S	Wet Pond (P-2)	HSG A soils may require pond liner	HSG A soils may require pond liner pond liner		No more than 15%	6 to 8 ft		
	puo	Wet ED Pond (P-3)			$25 \min^{1}$				
	I	Multiple Pond System (P-4)							
		Pocket Pond (P-5)	OK	Below WT	5 max^2		4 ft		
		Shallow Wetland (W-1)	HSG A soils	ISG A soils nay require liner Min. 2' separation if hotspot or aquifer	25 min	No more than 8%			
	Wetlands	ED Wetland (W-2)	may require liner				3 to 5 ft		
		Pond/Wetland System (W-3)							
	r	Pocket Wetland (W-4)	OK	Below WT	5 max		2 to 3 ft		
	uo	* Infiltration Trench (I-1)	Minimum fc > 0.5 in/hr; additional pretreatment required if fc > 2.0 in/hr	Minimum fc > 0.5 in/hr; additional pretreatment required if fc > 2.0 in/hr	Minimum 3'	5 max		1 ft^6	
	ïltrati	* Infiltration Basin (I-2)			10 max^3	No more than 15%	3 ft		
	Įnl	* Dry Well (I-3)			1 max^4		1 ft		
		Surface Sand Filter (F-1)			10 max^2		5 ft		
	ng es	Underground Sand Filter (F-2)			2 max^2		5 to 7 ft		
	lteri) actic	Perimeter Sand Filter (F-3)	OK	2 feet ⁵	2 max^2	No more than 6%	2 to 3 ft		
	Fil Pre	Organic Filter (F-4)			5 max^2		2 to 4 ft		
		Bioretention (F-5)			5 max^2		5 ft		
	en nnels	Dry Swale (O-1)	Made Soil	2 feet	5 max	No more	3-5 ft		
	Op Chai	Wet Swale (O-2)	ОК	Below WT	5 max	than 4%	1 ft		

STEP 2: Using only the *potential practices* selected from Table 1, further screen for suitable SMPs based on the physical constraints of a site. Tests pits are required to determine seasonally high groundwater elevation directly below the SMP(s).

* If an Infiltration SMP is selected for a site, initial feasibility testing is to be performed in accordance with Appendix D of the *NYS Stormwater Management Design Manual* to confirm the soil infiltration rates **prior** to submitting the SWPPP.

Notes:

- 1: Unless adequate water balance and anti-clogging device installed
- 2: Drainage area can be larger in some instances
- 3: May be larger in areas where the soil percolation rate is greater than 5.0 in/hr
- 4: Designed to treat rooftop runoff only
- 5: If designed with a permeable bottom, must meet the separation requirements for infiltration practices
- 6: Required ponding depth above the bottom geotextile layer

Explanation of Factors:

Soils - The key evaluation factors are based on an initial investigation of the NRCS hydrologic soils groups at the site *Water Table* - Indicates the minimum depth to the seasonally high water table from the bottom elevation of the SMP *Drainage Area* - Indicates minimum or maximum drainage area that is considered optimal based on water availability *Slope* - Indicates slope restrictions for where the SMP is installed and/or the steepness of the contributing drainage area *Head* - Provides an estimate of the elevation difference needed for a practice to function by means of gravity operation

STEP 3: Using only the *potential practices* selected from Table 2, further screen for suitable SMPs based on local resources to be protected and after discussing local water quality issues and/or flooding concerns with the regulating municipality. First check the watershed/regional factor, then select SMPs considered *potential practices* based on their restrictions in the factor.

Ps 2 2		TA	ABLE 3 – Wa	tershed/Regio	nal Factors N	Matrix		
es' SM m Ste _l	SMP	Streams	Aquifer	Lakes	Reservoir	Estuary/ Coastal	Cold Climate	tential actices
ълf Л	Group							Po Pr
	Ponds	Emphasize channel protection Restrict in-stream Practices Discouraged in	May require liner if HSG A soils are present Pretreat 100% of	Encourage the use of large permanent pool to improve phosphorus removal	Encourage the use of large permanent pool to improve sediment and phosphorous	Encourage long detention times to promote bacteria removal	Incorporate design features to improve winter performance	
	Wetlands	trout waters due to warming Minimize surface area of the permanent pool and encourage shading of water	hotspots Provide a 2' separation distance to water table	Promote long detention times to encourage bacteria removal	omote long ntion times to urage bacteria removal removal removal removal removal removal bacteria removal	nitrogen removal In flat areas, a pond drain may not be feasible	Encourage the use of salt tolerant vegetation	
	Infiltration	Strongly encouraged for groundwater recharge Combine with a detection facility for channel protection	Provide 100' horizontal separation distance from wells and 4' vertical distance from the seasonally high groundwater table	OK. Provides high phosphorus removal	Provide separation distance from bedrock & water table Pretreat runoff into infiltration practices	OK, but need separation distance to seasonally high groundwater Sandy soils require more pretreatment	Incorporate features to minimize the risk of frost heave Discourage infiltration of chlorides	
	Filtering Practices	Combine with a detention facility for channel protection	Excellent pretreatment for infiltration or open channel practices	OK, but designs with a submerged filter may result in phosphorus release	Excellent pretreatment for infiltration to open channel practices Moderate to high coliform removal	Moderate to high coliform removal Submerged filter bed designs appear to have very high nitrogen removal	Incorporate design features of Chapter 6 to improve winter performance	
	Open Channels	Combine with a detention facility for channel protection	OK, but hotspot runoff must be adequately pretreated	OK. Moderate phosphorus removal	Poor coliform removal for wet swales	Poor coliform removal for wet swales	Encourage the use of salt tolerant vegetation.	

Explanation of Factors:

Streams - Check if on the NYSDEC 303d list, Priority Waterbody List (PWL), or trout waters with Class C(t) and higher. Aquifers - Take special care to select a practice and incorporate design considerations that help protect groundwater quality. Lakes - Phosphorus removal and bacteria are typically of concern, check with the community and local watershed groups. Reservoirs - Turbidity, phosphorous removal, and bacteria are typically of concern for any public drinking water supplies. Estuary/Coastal - In the Hudson River Estuary, nitrogen is typically a concern due to the potential for eutrophication. Cold Climates- The Town of Bethlehem is designated as 'Cold Climate', consider all items in this column in the design. **STEP 4:** Using only the *potential practices* selected from Table 3, further screen for suitable SMPs based on capability of the SMP to address water quality and quantity issues. If a SMP is not a GOOD or FAIR option for meeting the management goal, use of a supplemental practice is required, i.e. a dry swale for water quality and a dry detention pond for water quantity.

Ps 3	Table 4 – SMP Capability Matrix							
SM Step	SMD		W	'ater Qua	lity	Water Quantity		entic
mort	Group	SMP Design Variants	Nitrogen	Metals	Bacteria	Channel Protection	Flood Control	Pote Pra
		Micropool ED Pond (P-1)						
	onds	Wet Pond (P-2)		Good	Good		Good	
		Wet ED Pond (P-3)	Good			Good		
	Ρ	Multiple Pond System (P-4)						
		Pocket Pond (P-5)						
	70	Shallow Wetland (W-1)						
	Vetlands	ED Wetland (W-2)	- Good	Fair	Good	Good	Good	
		Pond/Wetland System (W-3)						
	-	Pocket Wetland (W-4)					D1	
	u	Infiltration Trench (I-1)	Good	Good	Good	Poor	Poor	
	Itratio	Infiltration Basin (I-2)				D2	D2	
	Infi	Dry Well (I-3)				Poor	Poor	
		Surface Sand Filter (F-1)				D1	D1	
	ng ses	Underground Sand Filter (F-2)				Poor	Poor	
	lteri actid	Perimeter Sand Filter (F-3)	Good	Good	Fair	Poor	Poor	
	Open Fü Channels Pr	Organic Filter (F-4)				Poor	Poor	
		Bioretention (F-5)				D1	D1	
		Dry Swale (O-1)	Fair	Good	Poor	Poor	Poor	
		Wet Swale (O-2)	1 un	Good	1001	1001	1 001	

Notes:

GOOD - option for meeting management goal, has pollutant removals of >30% TN, >60% Metals, >70% Bacteria FAIR - option for meeting management goal, has pollutant removals of 15-30% TN, 30-60% Metals, 35-70% Bacteria POOR - option for meeting management goal, has pollutant removals of <15% TN, <30 Metals, <35% Bacteria D1 – In most cases, cannot meet this goal, but the design may be adapted to add storage component.

D2 - Generally cannot meet this goal, except in areas with soil percolation rates greater than 5.0 in/hr

List of Supplemental and Alternative Stormwater Management Practices from the Design Manual

Supplemental Practices from Chapter 5 (suitable only if incorporated with a standard SMP)

Pretreatment:

Oil/grit separators, Hydrodynamic structures, Deep sump catch basins, Vegetated filter strips, and Grass channels

Channel/Flood Protection:

Dry detention ponds, Underground vaults for flood control, and On-line storage in the storm drain pipe network

Alternative Practices from Chapter 9 (suitable *only* for Redevelopment Projects)

Rain Gardens, Cisterns, Green Roofs, Stormwater Planters, Permeable Paving, and Select Proprietary Products

s t		Table 5 - Communit	y and Envi	ronmental	Factors M	latrix		e e
s' SMH Table 4	SMP	SMP Design Variants	* Ease of Maintenance	Community Acceptance	Affordability	Safety	Habitat	ceptab ractic
uo əA,	Group							$\frac{Ac}{P}$
		Micropool ED Pond (P-1)	Moderate	Moderate	High	High	Moderate	
	S	Wet Pond (P-2)	High	High	High	Low	High	
	puo	Wet ED Pond (P-3)	High	High	High	Low	High	
	Ρ	Multiple Pond System (P-4)	High	High	Moderate	Low	High	
		Pocket Pond (P-5)	Low	Moderate	High	Moderate	Low	
	S	Shallow Wetland (W-1)	Moderate	High	Moderate	High	High	
	and	ED Wetland (W-2)	Moderate	Moderate	Moderate	Moderate	High	
	Vetl	Pond/Wetland System (W-3)	High	High	Moderate	Low	High	
	1	Pocket Wetland (W-4)	Low	Low	High	High	Moderate	
	tion	Infiltration Trench (I-1)	Low	High	Moderate	High	Low	
	iltra	Infiltration Basin (I-2)	Low	Low	Moderate	High	Low	
	lnfn	Dry Well (I-3)	Low	Moderate	Moderate	High	Low	
		Surface Sand Filter (F-1)	Moderate	Moderate	Low	High	Low	
	sə:	Underground Sand Filter (F-2)	Low	High	Low	Moderate	Low	
	lteri actic	Perimeter Sand Filter (F-3)	Low	High	Low	High	Low	
	Fil Pre	Organic Filter (F-4)	Moderate	High	Low	High	Low	
		Bioretention (F-5)	Moderate	Moderate	Moderate	High	Moderate	
	en mels	Dry Swale (O-1)	High	High	Moderate	High	Low	
	Op. Chan	Wet Swale (O-2)	High	Moderate	High	High	Moderate	

STEP 5: Using only the *potential practices* selected from Table 4, further screen for suitable SMPs based upon the local community and/ or environmental factors to determine the SMPs considered acceptable practices on the project site.

* For Town-Owned SMPs, Stormwater Ponds and an Ease of Maintenance rating of 'High' is the preferred SMP.

Explanation of Factors:

Ease of Maintenance - This column assesses the relative maintenance effort of each SMP, in terms of three main criteria: frequency of scheduled maintenance, chronic maintenance problems (such as outlet clogging) and reported failure rates.

Community Acceptance - This column assesses community acceptance, as measured by three factors: consumer market and preference surveys, reported nuisance problems, and visual orientation (i.e. is it prominently located or is it in a discrete underground location). It should be noted that a low ranking can often be improved by a better landscaping plan.

Affordability - The SMPs are ranked according to their relative construction cost per acre of impervious cover treated.

Safety - A comparative index evaluating relative safety of an SMP for access to deep pools or standing water that may create potential safety risks. Evaluation of liability and safety are of paramount concern in many residential settings.

Habitat - SMPs are evaluated on their ability to provide wildlife or wetland habitat, assuming by SMP and its buffer are landscaped appropriately. Objective criteria evaluated include size, water features, wetland features and vegetative cover.

Identify the Acceptable SMP(s):

Proposed SMP #1:	Supplemental or Alternative SMP:
Proposed SMP #2:	Supplemental or Alternative SMP: