Ticks and Tick-borne Diseases in New York State

Town of Bethlehem Deer and Tick-borne Diseases Committee Meeting
June 3rd 2014

Melissa Prusinski
Research Scientist and Laboratory Supervisor
New York State Department of Health
Bureau of Communicable Disease Control
Vector Ecology Laboratory
Tick Bio 101:

Hard-bodied ticks
Taxonomic family: Ixodidae

4 life stages:
Egg, Larva, Nymph, and Adult

Each active life-stage must feed once on blood in order to develop into the next life-stage.
Ticks in New York State:

- 30 species of ticks
- 10 species commonly bite humans
- 4 species can transmit diseases

Deer tick
Ixodes scapularis

Lone Star tick
Amblyomma americanum

American Dog tick
Dermacentor variabilis

Woodchuck tick
Ixodes cookei
Tick-borne Diseases in NY:

<table>
<thead>
<tr>
<th>Disease (causative agent)</th>
<th>Reported NY Cases 2001-2013*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme Disease (Borrelia burgdorferi)</td>
<td>57,047</td>
</tr>
<tr>
<td>Human Granulocytic Anaplasmosis (Anaplasma phagocytophilum)</td>
<td>2,784</td>
</tr>
<tr>
<td>Babesiosis (Babesia microti)</td>
<td>2,596</td>
</tr>
<tr>
<td>Human Monocytic Ehrlichiosis (Ehrlichia chaffeensis)</td>
<td>693</td>
</tr>
<tr>
<td>Rocky Mountain Spotted fever (Rickettsia rickettsii)</td>
<td>179</td>
</tr>
<tr>
<td>Powassan encephalitis (Powassan virus or Deer Tick virus)</td>
<td>18</td>
</tr>
<tr>
<td>Tick-borne relapsing fever (Borrelia miyamotoi)</td>
<td>5 **</td>
</tr>
<tr>
<td>Tularemia (Francisella tularensis)</td>
<td>4</td>
</tr>
</tbody>
</table>

* Reported to the NYSDOH by medical providers and clinical laboratories

** Identified in a NYSDOH retrospective study of patients screening negative for anaplasmosis
Lyme Disease cases reported in New York State* 2001 - 2013

n = 57,047

Number of cases

- 0
- 1 - 100
- 101 - 250
- 251 - 500
- 501 - 1,000
- 1,001 - 3,000
- 3,001 - 6,000
- 10,352

*Exclusive of New York City. Sentinel surveillance conducted in 19 counties in at least one year. Confirmed and probable cases, 2013 provisional data.
The Deer tick can potentially transmit **5 diseases:** (in New York State)

- **Lyme disease**
 Most common tick-borne disease in New York State (and the nation)

- **Babesiosis**
 Expanding northward in NY

- **Anaplasmosis**
 Expanding north and westward in NY

- **Powassan encephalitis (Deer Tick virus/DTV)**
 Emerging pathogen, sporadic cases

- **Tick-borne Relapsing Fever** (*Borrelia miyamotoi*)
 Emerging pathogen, sporadic cases identified retrospectively – no commercial lab test available

As determined from NYSDOH ABDP Tick Identification Service/Passive surveillance

Number of *I. scapularis*

- 1 - 5
- 6 - 15
- 16 - 25
- 26 - 45
- 46 - 75
- 76 - 105
- 106 - 125
- 126 - 145
- 146 - 185
- 186 - 235

Griffin Laboratory

N = 1886

As determined from NYSDOH ABDP Tick Identification Service/Passive surveillance
Locally Acquired *Ixodes scapularis* Mapped by Zip Code 1997-1999*

* As determined from NYSDOH ABDP Tick Identification Service/Passive surveillance

N = 3829
Locally Acquired *Ixodes scapularis* Mapped by Zip Code 2000 - 2002*

Number of *I. scapularis*

- 1 - 5
- 6 - 15
- 16 - 25
- 26 - 45
- 46 - 75
- 76 - 105
- 106 - 125
- 126 - 145
- 146 - 185
- 186 - 235

Griffin Laboratory

N = 4312

As determined from NYSDOH ABDP Tick Identification Service/Passive Surveillance
Locally acquired *Ixodes scapularis*
by zip code 2003 – 2004*

N = 3,992

As determined from NYSDOH AEDP Tick Identification Service / Passive Surveillance
Locally Acquired Deer Ticks (*Ixodes scapularis*) Mapped by ZIP code*

New York State** 2003 - 2005

*As determined from NYS BCDC Tick Identification Service passive surveillance activities

**Exclusive of New York City
Locally Acquired Deer Ticks (*Ixodes scapularis*) Mapped by ZIP Code*

New York State** 2006 - 2008

Number per ZIP code

- **0**
- 1 - 10
- 11 - 25
- 26 - 50
- 51 - 75
- 76 - 100
- 101 - 150
- 151 - 200
- 201 - 319

*As determined from NYSDOH BCDC Tick Identification Service passive surveillance activities
**Exclusive of New York City
Most Lyme cases acquired thru the bite of a nymph
The Seasonal Life cycle of the Deer tick*:

* CT Agricultural Experimental Field Station
Deer tick “questing”

How a Deer tick finds and attaches to a host…

…they do not jump, fly or drop out of trees
Common (and important) hosts of the Deer tick:

Mice, chipmunks, shrews, and other small mammals

larvae and nymphs

white-tailed deer

adult ticks
Integrated Tick Management for control of *Ixodes scapularis*

- Personal protection
- Landscape management
- Management of host abundance
- Host-targeted acaricides
- Area application acaricides
- Biological control
Personal protection:
Personal protection:

Correct Tick Removal Technique:

Grasp tick with tweezers, as close to the skin as possible (i.e. by the mouthparts or “head” of the tick)

Pull slowly, with a constant motion away from the skin (perpendicular to skin surface)

Do not use petroleum jelly, gasoline, lit match or cigarette, nail polish or any other method.

You may be increasing your risk of acquiring a tick-borne disease!
Landscape management:

- Wood chips along stone wall & under foundation plantings
- 3' wide or greater barrier
- Deer resistant flower garden or vegetable garden with fence
- 3 yard tick migration zone
- Stone wall with tick barrier

* CT Agricultural Experimental Field Station
Landscape management:

* CT Agricultural Experimental Field Station
Landscape management:

* CT Agricultural Experimental Field Station
Management of host abundance:

Eliminate bird feeders or relocate to distant area of yard (reduce mice)

Use of deer fencing (excludes deer)
Host-targeted acaricides:

Deer may harbor hundreds of ticks, transporting and dispersing them over many miles!
Host-targeted acaricides:

- Small mammals serve as hosts to hundreds of immature ticks.

- Many infected nymphs and adult ticks result if the mouse is carrying *B. burgdorferi*.
Host-targeted acaricides:

“Maxforce Baitbox” applies pesticide to rodents as they go through a maze to locate bait inside.

“4 Poster” deer feeding station applies pesticide as deer eat.
Area application acaricides:

Target tick “hot-spots”: edges of lawns & woods in May/early June for nymphs & October for adult *I. scapularis*
Biological control:

- Minute parasitic wasp (*Ixodiphagus hookeri*) parasitizes *I. scapularis*, but usefulness is limited.

- Engorged *I. scapularis* susceptible to certain nematodes; but to sensitive to ↓ autumn temps.

- Some birds (chickens, guinea fowl, etc.) will eat ticks

- Entomopathogenic fungi most promising, some (*Beauveria bassiana* & *Metarhizium anisopliae*) pathogenic to *I. scapularis*.
Future Option?

Reservoir Targeted Vaccination of Mice

• OspA-based oral vaccine

• 5-year field trial

• 23% reduction in nymphal infection prevalence by year 2

• 76% reduction by year 5

Resources:

Cornell Cooperative Extension of Suffolk County. Integrated Pest Management for the Deer Tick.

http://wildlifecontrol.info/TickStudy/Documents/PDF/Final%20Report/4-PosterFinalReportpart2.pdf

Questions?